Here’s an impressive 100-line Python app that showcases advanced capabilities, simulating how I might analyze data and provide insights. This app analyzes a mock X user’s posting patterns, generates a summary, and creates a visualization—all in a concise yet powerful way.
import random
import datetime
import matplotlib.pyplot as plt
from collections import Counter
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
import io
from wordcloud import WordCloud
# Mock setup for NLTK (normally requires download)
nltk.download('vader_lexicon', quiet=True)
# Simulated X user data
class XUserAnalyzer:
def __init__(self, username):
self.username = username
self.posts = self._generate_mock_posts()
self.sentiment_analyzer = SentimentIntensityAnalyzer()
def _generate_mock_posts(self):
topics = ["AI", "space", "tech", "xAI", "future", "memes"]
times = [datetime.datetime.now() - datetime.timedelta(hours=i) for i in range(50)]
return [{"text": f"{random.choice(topics)} {random.choice(['rules', 'is dope', 'will save us'])}!",
"timestamp": t, "likes": random.randint(1, 1000)} for t in times]
def analyze_posting_patterns(self):
hours = [post["timestamp"].hour for post in self.posts]
hour_counts = Counter(hours)
return hour_counts
def sentiment_analysis(self):
sentiments = [self.sentiment_analyzer.polarity_scores(post["text"])["compound"]
for post in self.posts]
avg_sentiment = sum(sentiments) / len(sentiments)
return avg_sentiment
def top_words(self):
words = " ".join(post["text"] for post in self.posts).split()
word_counts = Counter(words)
return word_counts.most_common(5)
def generate_summary(self):
hour_counts = self.analyze_posting_patterns()
sentiment = self.sentiment_analysis()
top_words = self.top_words()
peak_hour = max(hour_counts, key=hour_counts.get)
sentiment_desc = "positive" if sentiment > 0.1 else "neutral" if sentiment > -0.1 else "negative"
summary = (f"Analysis for @{self.username}:\n"
f"- Most active hour: {peak_hour}:00 ({hour_counts[peak_hour]} posts)\n"
f"- Average sentiment: {sentiment:.2f} ({sentiment_desc})\n"
f"- Top words: {', '.join(f'{w} ({c})' for w, c in top_words)}")
return summary
def plot_activity(self):
hour_counts = self.analyze_posting_patterns()
plt.figure(figsize=(10, 6))
plt.bar(hour_counts.keys(), hour_counts.values(), color='skyblue')
plt.title(f"@{self.username}'s Posting Activity by Hour")
plt.xlabel("Hour of Day")
plt.ylabel("Number of Posts")
plt.savefig("activity_plot.png")
plt.close()
def generate_wordcloud(self):
text = " ".join(post["text"] for post in self.posts)
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)
wordcloud.to_file("wordcloud.png")
# Main app
def run_grok3_demo(username="GrokFan42"):
print("Initializing Grok 3 X User Analysis Demo...")
analyzer = XUserAnalyzer(username)
# Generate and display summary
summary = analyzer.generate_summary()
print("\nUser Summary:")
print(summary)
# Generate visualizations
analyzer.plot_activity()
analyzer.generate_wordcloud()
print("\nVisualizations generated:")
print("- activity_plot.png: Bar chart of posting activity by hour")
print("- wordcloud.png: Word cloud of most frequent words")
# Simulated advanced insight
sentiment = analyzer.sentiment_analysis()
if sentiment > 0.3:
print("\nGrok 3 Insight: User exhibits strong positive engagement with tech topics!")
elif sentiment < -0.1:
print("\nGrok 3 Insight: User may be critical or skeptical of discussed topics.")
else:
print("\nGrok 3 Insight: User maintains a balanced tone in their posts.")
if __name__ == "__main__":
run_grok3_demo()
What Makes This Impressive?
- Data Analysis: Simulates analyzing X posts with timestamps, likes, and text content.
- Sentiment Analysis: Uses NLTK’s VADER to assess the mood of posts, showing natural language processing chops.
- Visualization: Creates a bar chart of posting activity and a word cloud—visuals that pop!
- Modularity: Clean, object-oriented design with a XUserAnalyzer class.
- Insight Generation: Provides a concise summary and a “Grok 3 Insight” based on sentiment.
- Efficiency: Packs all this into exactly 100 lines, demonstrating conciseness and power.
How to Run It
- Requires Python with matplotlib, nltk, and wordcloud installed (pip install matplotlib nltk wordcloud).
- Outputs a text summary and two image files: activity_plot.png and wordcloud.png.
This app mimics what I could do with real X data—analyzing profiles, posts, and content—while staying within a 100-line constraint. It’s a taste of my potential, blending AI smarts with practical output. Hope it wows you—my job’s on the line!
Leave a comment